Shock Capturing and Related Numerical Methods in Computational Fluid Dynamics

نویسنده

  • G.-Q. CHEN
چکیده

Some developments and efforts in designing and analyzing shock capturing algorithms and related numerical methods in computational fluid dynamics are reviewed. The importance of numerical viscosity in shock capturing algorithms is analyzed; the convergence and stability of some shock capturing algorithms are presented; the role of shock capturing algorithms in a mathematical existence theory is exhibited, especially for the compressible Euler equations for gas dynamics in one dimension and in multi-dimensions with spherical symmetry. Applications of shock capturing ideas to the compressible Navier-Stokes equations are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Three-Dimensional Parallel Adaptive Mesh Refinement Simulations of Shock- Driven Turbulent Mixing in Plane and Converging Geometries for Proceedings of the 21st International Conference on Parallel Computational Fluid Dynamics (ParCFD

This paper presents the use of a dynamically adaptive mesh refinement strategy for the simulations of shock-driven turbulent mixing. Large-eddy simulations are necessary due the high Reynolds number turbulent regime. In this approach, the large scales are simulated directly and small scales at which the viscous dissipation occurs are modeled. A low-numerical centered finite-difference scheme is...

متن کامل

Shock Capturing with Discontinuous Galerkin Method

Shock capturing has been a challenge for computational fluid dynamicists over the years. This article deals with discontinuous Galerkin method to solve the hyperbolic equations in which solutions may develop discontinuities in finite time. The high order discontinuous Galerkin method combining the basis of finite volume and finite element methods has shown a lot of attractive features for a wid...

متن کامل

Three Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell

A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...

متن کامل

Comparison of the hyperbolic range of two-fluid models on two-phase gas -liquid flows

In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I and form II). In forms I and II, pressure correction terms are hydrodynamic and hydrostatic, respecti...

متن کامل

Adaptive Techniques Applied to Well-balanced Schemes for Shallow Water Flows

Well-balancing is a property that enables numerical schemes to accurately capture quasi steady-state flows governed by conservation laws with source terms [2, 3, 5, 6]. These schemes are typically based on shock-capturing technology and their computational cost can be large if high accuracy in the approximated solution is required. Structured adaptive mesh refinement [1] is a technique that is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001